Coursera
  • 온라인 학위학사 및 석사 학위 살펴보기
  • MasterTrack™석사 학위를 따기 위한 학점 얻기
  • 대학교 수료증대학원 수준의 학습을 통해 경력을 쌓으세요.
경력 찾기기업용 Coursera대학교용
  • 검색
  • 상위 강좌
  • 로그인
  • 무료 회원 가입
    Coursera
    • 검색
    • Big Data

    필터링 기준

    "big data"에 대한 684개의 결과

    • Placeholder
      University of California, Davis

      Big Data, Artificial Intelligence, and Ethics

      획득할 기술: Data Management, Big Data, Machine Learning, Natural Language Processing, Data Analysis, Data Mining

      4.6

      (408개의 검토)

      Beginner · Course · 1-4 Weeks

    • Placeholder
      Universitat Autònoma de Barcelona

      Big Data: el impacto de los datos masivos en la sociedad actual

      획득할 기술: Big Data, Data Management, Business Analysis, Accounting, Business Intelligence, Cloud Computing, Cloud Platforms

      4.7

      (2.1k개의 검토)

      Beginner · Course · 1-3 Months

    • Placeholder
      Coursera Project Network

      Cleaning and Exploring Big Data using PySpark

      획득할 기술: Big Data, Data Analysis, Data Management, Exploratory Data Analysis, Python Programming

      4.1

      (59개의 검토)

      Intermediate · Guided Project · Less Than 2 Hours

    • Placeholder
      Google Cloud

      Google Cloud Big Data and Machine Learning Fundamentals en Español

      획득할 기술: Applied Machine Learning, Big Data, Business Analysis, Business Psychology, Cloud Computing, Cloud Platforms, Cloud Storage, Computer Architecture, Computer Programming, Data Analysis, Data Management, Deep Learning, Distributed Computing Architecture, Entrepreneurship, Full-Stack Web Development, Google Cloud Platform, Machine Learning, Python Programming, Statistical Programming, Web Development, Accounting, Cloud API, Databases, Financial Analysis, SQL, Tensorflow

      4.7

      (658개의 검토)

      Intermediate · Course · 1-3 Months

    • Placeholder
      Cloudera

      Analyzing Big Data with SQL

      획득할 기술: Data Management, Databases, SQL, Statistical Programming, Big Data, Apache, Cloud Computing, Cloud Platforms, Computer Architecture, Distributed Computing Architecture, Human Computer Interaction, Software Engineering, Theoretical Computer Science, User Experience, Computer Programming, Data Analysis, Programming Principles

      4.9

      (506개의 검토)

      Beginner · Course · 1-3 Months

    • Placeholder
      Yonsei University

      Emerging Technologies: From Smartphones to IoT to Big Data

      획득할 기술: Network Architecture, Computer Architecture, Computer Networking, Human Computer Interaction, Big Data, Data Management, Software Engineering, Adaptability, Business Psychology, Entrepreneurship, Internet Of Things, Computer Graphics, Interactive Design, Computer Vision, Machine Learning, User Experience, Mobile Development, Android Development, Apache, Cloud Computing, Communication, Data Analysis, Data Model, Market Analysis, Marketing, Network Security, Security Engineering, iOS Development, Computational Logic, Mathematical Theory & Analysis, Mathematics, Theoretical Computer Science, Virtual Reality, Data Analysis Software, Data Architecture, Data Mining, Data Structures, Data Warehousing, Database Application, Extract, Transform, Load, SQL, Statistical Analysis

      4.7

      (1.7k개의 검토)

      Beginner · Specialization · 3-6 Months

    • Placeholder
      Placeholder
      University of California San Diego

      Big Data Modeling and Management Systems

      획득할 기술: Data Management, Data Science, Business, Data Model, Data Structures, Spreadsheet Software, Big Data, Business Analysis, Data Architecture, Database Application, Databases, Information Technology, Data Warehousing

      4.4

      (3k개의 검토)

      Mixed · Course · 1-3 Months

    • Placeholder
      Placeholder
      University of Colorado Boulder

      Software Architecture Patterns for Big Data

      획득할 기술: Big Data, Software Engineering

      Advanced · Course · 1-4 Weeks

    • Placeholder
      Placeholder
      Universitat Autònoma de Barcelona

      Big Data: adquisición y almacenamiento de datos

      획득할 기술: Big Data, Business Analysis, Data Management, Accounting, Data Analysis, Financial Analysis, Apache, Computer Architecture, Distributed Computing Architecture, Databases, SQL, Statistical Programming, Business Intelligence, Graph Theory, Mathematics, NoSQL, Software Architecture, Software Engineering, Theoretical Computer Science

      4.4

      (617개의 검토)

      Intermediate · Course · 1-3 Months

    • Placeholder
      Placeholder
      Universitat Autònoma de Barcelona

      Big Data: procesamiento y análisis

      획득할 기술: Data Management, Big Data, Probability & Statistics, Machine Learning, Regression, Data Analysis, Theoretical Computer Science, Data Structures, Artificial Neural Networks, Dimensionality Reduction, Advertising, Algorithms, Basic Descriptive Statistics, Business Psychology, Communication, Data Visualization, General Statistics, Human Resources, Machine Learning Algorithms, Marketing, Plot (Graphics), Statistical Machine Learning, Training, Accounting

      4.2

      (242개의 검토)

      Intermediate · Course · 1-3 Months

    • Placeholder
      Placeholder
      Coursera Project Network

      Curso Completo de Spark con Databricks (Big Data)

      획득할 기술: Applied Machine Learning, Big Data, Data Management, Machine Learning, Databases

      3.9

      (14개의 검토)

      Advanced · Guided Project · Less Than 2 Hours

    • Placeholder
      Placeholder
      Korea Advanced Institute of Science and Technology(KAIST)

      Big data and Language 1

      획득할 기술: Big Data, Data Management, Applied Machine Learning, Communication, Machine Learning, Reinforcement Learning

      4.5

      (111개의 검토)

      Beginner · Course · 1-4 Weeks

    big data과(와) 관련된 검색

    big data analytics
    big data analysis with scala and spark (scala 2 version)
    big data integration and processing
    big data analysis with scala and spark
    big data modeling and management systems
    big data, genes, and medicine
    big data emerging technologies
    big data: visualización de datos
    1…456…57

    요약하자면, 여기에 가장 인기 있는 big data 강좌 10개가 있습니다.

    • Big Data, Artificial Intelligence, and Ethics: University of California, Davis
    • Big Data: el impacto de los datos masivos en la sociedad actual: Universitat Autònoma de Barcelona
    • Cleaning and Exploring Big Data using PySpark: Coursera Project Network
    • Google Cloud Big Data and Machine Learning Fundamentals en Español: Google Cloud
    • Analyzing Big Data with SQL: Cloudera
    • Emerging Technologies: From Smartphones to IoT to Big Data: Yonsei University
    • Big Data Modeling and Management Systems: University of California San Diego
    • Software Architecture Patterns for Big Data: University of Colorado Boulder
    • Big Data: adquisición y almacenamiento de datos: Universitat Autònoma de Barcelona
    • Big Data: procesamiento y análisis: Universitat Autònoma de Barcelona

    Machine Learning에서 학습할 수 있는 스킬

    Python 프로그래밍 (33)
    TensorFlow (32)
    심층 학습 (30)
    인공 신경 회로망 (24)
    빅 데이터 (18)
    통계 분류 (17)
    강화 학습 (13)
    대수학 (10)
    베이지안 (10)
    선형 대수 (10)
    선형 회귀 (9)
    Numpy (9)

    빅 데이터에 대한 자주 묻는 질문

    • “Big data” is a term widely used to describe our data-rich world, in which virtually every activity generates a digital data footprint that can be collected and analyzed. While data and data analysis are not necessarily new, the effective use of the extremely large - and rapidly-growing - datasets of today require new approaches to data management.

      In order to harness big data for important applications like machine learning and artificial intelligence, you need more than an Excel spreadsheet or a traditional relational database and SQL. Instead, an entire data infrastructure is necessary to collect and process this data at scale, including data pipelines, data lakes, and data warehouses.

      To make this possible, data engineers rely on new approaches to data processing such as MapReduce, developed by Google, the open-source Apache Hadoop ecosystem including Apache Spark and Apache Hive, and, increasingly, cloud computing and cloud database platforms like Cloudera.‎

    • With companies in practically every industry eager to discover ways to harness the power of big data in their operations, having a background in this area can open doors to a wide range of careers. Operations managers at manufacturing or logistics companies may harness data to improve their demand forecasting, inventory planning, and process efficiency; digital marketers use marketing analytics to better understand their customers and the effectiveness of their messaging; and “quants” at hedge funds rely on data-based financial engineering approaches to move millions of dollars in milliseconds.

      Understanding how big data applications are built and what they are capable of can thus be incredibly valuable even if you aren’t a data engineer or data scientist yourself. However, if you have the expertise and desire to work directly with big data yourself, data engineers are responsible for building the data infrastructure capable of reliably and efficiently delivering big data at scale, and data scientists are responsible for using a wide range of analytic and programming approaches to uncover insights from it.

      These two roles are in extremely high demand, and command salaries to match. According to Glassdoor, data engineers earn an average annual salary of $102,864, and data scientists earn an average annual salary of $113,309.‎

    • Yes - in fact, Coursera is one of the best places to learn about big data. You can take individual courses and Specializations spanning multiple courses on big data, data science, and related topics from top-ranked universities from all over the world, from the University California San Diego to Universitat Autònoma de Barcelona. Coursera also offers the opportunity to learn from industry leaders in the field like Google Cloud, Cloudera, and IBM, including options to get professional certificates.‎

    • The skills and experience that you might need to already have before starting to learn big data may include software programming knowledge as well as top skills in math, algebra, data science, and related areas. The types of programming languages that are common in big data environments include Python, SQL, Java, C, and overall data structure and algorithm insights. Working with structured and unstructured data may likely require knowledge and background in discrete mathematics, statistics, and linear algebra. Of course, learning about big data roles would also require you to bring good soft skills like listening, focus, communication, and flexibility to the table. Finally, what would also play a part before starting to learn big data might include a good education in data science or mathematics.‎

    • The kind of people best suited for work that involves big data are those who are keenly interested in data sciences, statistical modeling, data analysis, and the move to a big data future with the internet. People who love to work with data are best suited for roles in big data. This would likely include persons who may have quantitative experience in data technology, or a background and a skill set working with accounting, finance, ratios, and percentages. Big data enthusiasts may also be adventurous types, who take big risks and want to work at the forefront of technology and society.‎

    • Learning big data may be right for you if you have strong analytical insights, a data science background, a head for numbers, and a familiarity with internet tools, cloud platforms, and data analysis software. Working in big data is one of the most in-demand jobs now, and the opportunity to work in a relevant field is very alluring. If you're flexible in your work roles, are a creative thinker, and have the discipline and right background, then learning big data may be right for you to advance your career forward.‎

    이 FAQ 콘텐츠는 정보 전달 목적만으로 사용할 수 있습니다. 학습자는 과정 및 기타 학점 정보가 개인적, 직업적 및 재정적 목표에 부합하는지 확인하기 위해 추가 조사를 수행하는 것이 좋습니다.
    살펴볼 만한 다른 주제
    Placeholder
    예술 & 인문학
    338개의 강좌
    Placeholder
    비즈니스
    1095개의 강좌
    Placeholder
    컴퓨터 공학
    668개의 강좌
    Placeholder
    데이터 과학
    425개의 강좌
    Placeholder
    정보 기술
    145개의 강좌
    Placeholder
    건강
    471개의 강좌
    Placeholder
    수학 및 논리
    70개의 강좌
    Placeholder
    자기개발
    137개의 강좌
    Placeholder
    물리 과학 및 공학
    413개의 강좌
    Placeholder
    사회 과학
    401개의 강좌
    Placeholder
    언어 학습
    150개의 강좌

    Coursera Footer

    경력을 시작하거나 쌓기

    • Google 데이터 분석가
    • Google 디지털 마케팅 및 전자 상거래 전문 자격증
    • Python을 통한 Google IT 자동화 전문 자격증
    • Google IT 지원
    • Google 프로젝트 관리
    • Google UX 디자인
    • Google 클라우드 자격증: 클라우드 아키텍트 취득 준비
    • IBM 사이버 보안 분석가
    • IBM 데이터 분석가
    • IBM 데이터 엔지니어링
    • IBM 데이터 과학
    • IBM 풀스택 클라우드 개발자
    • IBM 기계 학습
    • Intuit 부기
    • Meta 프런트 엔드 개발자
    • DeepLearning.AI TensorFlow 개발자 전문 자격증
    • SAS 프로그래머 전문 자격증
    • 경력 시작
    • 수료증 취득 준비
    • 경력 쌓기
    • Python 구문 오류를 찾아내는 방법
    • Python 예외를 발견하는 방법
    • 모든 프로그래밍 자습서 보기

    인기 강좌 및 수료증

    • 무료 강좌
    • 인공 지능 강좌
    • 블록체인 강좌
    • 컴퓨터 공학 강좌
    • Cursos Gratis
    • 사이버 보안 강좌
    • 데이터 분석 강좌
    • 데이터 과학 강좌
    • 영어 말하기 강좌
    • 풀스택 웹 개발 강좌
    • Google 강좌
    • 인사 강좌
    • IT 강좌
    • 영어 학습 강좌
    • Microsoft Excel 강좌
    • 제품 관리 강좌
    • 프로젝트 관리 강좌
    • Python 강좌
    • SQL 강좌
    • 애자일 수료증
    • CAPM 수료증
    • CompTIA A+ 수료증
    • 데이터 분석 수료증
    • 스크럼 마스터 수료증
    • 모든 강좌 보기

    인기 컬렉션 및 문서

    • 하루만에 완료할 수 있는 무료 온라인 강좌
    • 인기 무료 강좌
    • 비즈니스 직무
    • 사이버 보안 직무
    • 신입 IT 직무
    • 데이터 분석가 면접 질문
    • 데이터 분석 프로젝트
    • 데이터 분석가로 취업하는 방법
    • 프로젝트 관리자로 취업하는 방법
    • IT 기술
    • 프로젝트 관리자 면접 질문
    • Python 프로그래밍 기술
    • 면접에서 물어보는 강점과 약점
    • 데이터 분석가가 하는 일
    • 소프트웨어 엔지니어가 하는 일
    • 데이터 엔지니어란
    • 데이터 과학자란
    • 제품 디자이너란
    • 스크럼 마스터란
    • UX 리서처란
    • PMP 수료증을 취득하는 방법
    • PMI 수료증
    • 인기 있는 사이버 보안 자격증
    • 인기 있는 SQL 자격증
    • 모든 Coursera 문서 읽기

    온라인으로 학위 또는 자격증 취득

    • Google 전문 자격증
    • 전문 자격증
    • 모든 자격증 보기
    • 학사 학위
    • 석사 학위
    • 컴퓨터 공학 학위
    • 데이터 과학 학위
    • MBA 및 경영학 학위
    • 데이터 분석 학위
    • 공중 보건 학위
    • 사회 과학 학위
    • 관리 학위
    • BA 및 BS 학위 비교
    • 학사 학위란 무엇인가요?
    • 개발해야 할 11가지 좋은 학습 습관
    • 추천서를 작성하는 방법
    • 비즈니스 학위 취득 후 취업 가능한 10개의 수요가 높은 직무
    • 컴퓨터 공학 석사 학위는 취득할 만한 가치가 있나요?
    • 모든 학위 프로그램 보기
    • Coursera 인도
    • Coursera 영국
    • Coursera 멕시코

    Coursera

    • 소개
    • 제공 내용
    • 리더십
    • 직업
    • 카탈로그
    • Coursera Plus
    • 전문 자격증
    • MasterTrack® 자격증
    • 학위
    • 기업용 Coursera
    • 정부용
    • 캠퍼스용
    • 파트너가 되기
    • 코로나바이러스감염증-19 대응

    커뮤니티

    • 학습자
    • 파트너
    • 베타 테스터
    • 번역가
    • 블로그
    • 기술 블로그
    • 지도 센터

    기타

    • 보도 자료
    • 투자자
    • 조건
    • 개인정보 보호
    • 도움말
    • 접근성
    • 문의하기
    • 문서
    • 디렉토리
    • 계열사
    • 현대 노예 선언문
    어디에서나 학습
    Placeholder
    Placeholder
    Placeholder
    © 2023 Coursera Inc. All rights reserved.
    • Placeholder
    • Placeholder
    • Placeholder
    • Placeholder
    • Placeholder