Coursera
  • 온라인 학위학사 및 석사 학위 살펴보기
  • MasterTrack™석사 학위를 따기 위한 학점 얻기
  • 대학교 수료증대학원 수준의 학습을 통해 경력을 쌓으세요.
경력 찾기기업용 Coursera대학교용
  • 검색
  • 상위 강좌
  • 로그인
  • 무료 회원 가입
    Coursera
    • 검색
    • Reinforcement Learning

    필터링 기준

    "reinforcement learning"에 대한 84개의 결과

    • Placeholder
      Intel

      An Introduction to Practical Deep Learning

      획득할 기술: Machine Learning, Deep Learning, Advertising, Entrepreneurship, Marketing

      4.2

      (142개의 검토)

      Intermediate · Course · 1-3 Months

    • Placeholder
      Imperial College London

      Master of Science in Machine Learning and Data Science

      학위 취득

      Degree · 1-4 Years

    • Placeholder
      University of Colorado Boulder

      Spacecraft Dynamics and Control

      획득할 기술: Mathematics, Linear Algebra, Differential Equations, Algebra, Calculus, Data Analysis, Geometry, Matlab, Mathematical Theory & Analysis, General Statistics, Probability & Statistics, Data Visualization, Computer Programming, Applied Mathematics, Operations Research, Research and Design, Statistical Visualization, Strategy and Operations, Data Analysis Software, Data Management, Databases, Plot (Graphics), SQL, Statistical Programming, Algorithms, Theoretical Computer Science, Angular, Business Analysis, Computer Programming Tools, Critical Thinking, Cyberattacks, Entrepreneurship, Estimation, Leadership and Management, Problem Solving, Programming Principles, Python Programming, Security Engineering, Web Development

      4.8

      (381개의 검토)

      Advanced · Specialization · 3-6 Months

    • Placeholder
      University of Colorado Boulder

      Master of Science in Data Science

      획득할 기술: Theoretical Computer Science, Probability & Statistics, General Statistics, Algorithms, Data Management, Mathematics, Strategy and Operations, Computer Architecture, Databases, Leadership and Management, Communication, Hardware Design, Statistical Programming, Operating Systems, Machine Learning, Research and Design, Data Analysis, Finance, Computer Programming, SQL, Writing, Regression, Business Analysis, Data Structures, Project Management, Software Engineering, Business Communication, Probability Distribution, Entrepreneurship, Database Design, Statistical Tests, Computer Graphics, Computer Networking, Design and Product, Statistical Analysis, Accounting, Systems Design, Human Computer Interaction, Data Model, Database Administration, Database Application, Database Theory, Machine Learning Algorithms, Statistical Machine Learning, PostgreSQL, Estimation, Data Visualization, Problem Solving, Operations Research, Internet Of Things, Network Architecture, Applied Mathematics, Computer Vision, Graph Theory, Deep Learning, Geometry, User Experience, Marketing, Computer Graphic Techniques, Mathematical Theory & Analysis, Programming Principles, Python Programming, Supply Chain and Logistics, Algebra, Cryptography, Business Psychology, Interactive Design, Critical Thinking, Security Engineering, Data Mining, Correlation And Dependence, Distributed Computing Architecture, Financial Analysis, Linear Algebra, Linux, User Experience Design, Cost Accounting, Differential Equations, Cloud Computing, Cyberattacks, Computer Programming Tools, Computational Logic, Scrum (Software Development), Applied Machine Learning, Budget Management, Calculus, Econometrics, Experiment, Feature Engineering, Graphic Design, Other Programming Languages, Sales, Software Architecture, Software Testing, System Programming, Visual Design, Artificial Neural Networks, Emotional Intelligence, Market Analysis, NoSQL, Statistical Visualization, Data Warehousing, Strategy, Basic Descriptive Statistics, Computational Thinking, Data Analysis Software, Exploratory Data Analysis, Investment Management, Material Handling, Organizational Development, Product Lifecycle, Risk Management, Amazon Web Services, Big Data, Cloud Platforms, Culture, Decision Making, Graphics Software, Human Resources, Microarchitecture, Security Strategy, Application Development, Computer Security Models, Network Model, Operational Analysis, Product Design, Reinforcement Learning, Software Security, System Security, User Research, Plot (Graphics), R Programming, Account Management, Banking, BlockChain, Business Process Management, C Programming Language Family, Contract Management, Data Architecture, FinTech, Financial Accounting, Financial Management, Geovisualization, Inventory Management, Management Accounting, Markov Model, Matlab, Natural Language Processing, Operations Management, Planning, Product Management, Spreadsheet Software, Storytelling, Supplier Relationship Management, Computer Science, Computer Security Incident Management, Data Science, Dimensionality Reduction, Forecasting, Journalism, Leadership Development, Network Analysis, Network Security, System Software

      학위 취득

      Degree · 1-4 Years

    • Placeholder
      CertNexus

      Detect and Mitigate Ethical Risks

      획득할 기술: Probability & Statistics, System Security, General Statistics, Risk Management

      4.5

      (68개의 검토)

      Beginner · Course · 1-3 Months

    • Placeholder
      University of Colorado Boulder

      Master of Engineering in Engineering Management

      획득할 기술: Theoretical Computer Science, Probability & Statistics, General Statistics, Algorithms, Data Management, Mathematics, Strategy and Operations, Computer Architecture, Databases, Leadership and Management, Communication, Hardware Design, Statistical Programming, Operating Systems, Machine Learning, Research and Design, Data Analysis, Finance, Computer Programming, SQL, Writing, Regression, Business Analysis, Data Structures, Project Management, Software Engineering, Business Communication, Probability Distribution, Entrepreneurship, Database Design, Statistical Tests, Computer Graphics, Computer Networking, Design and Product, Statistical Analysis, Accounting, Systems Design, Human Computer Interaction, Data Model, Database Administration, Database Application, Database Theory, Machine Learning Algorithms, Statistical Machine Learning, PostgreSQL, Estimation, Data Visualization, Problem Solving, Operations Research, Internet Of Things, Network Architecture, Applied Mathematics, Computer Vision, Graph Theory, Deep Learning, Geometry, User Experience, Marketing, Computer Graphic Techniques, Mathematical Theory & Analysis, Programming Principles, Python Programming, Supply Chain and Logistics, Algebra, Cryptography, Business Psychology, Interactive Design, Critical Thinking, Security Engineering, Data Mining, Correlation And Dependence, Distributed Computing Architecture, Financial Analysis, Linear Algebra, Linux, User Experience Design, Cost Accounting, Differential Equations, Cloud Computing, Cyberattacks, Computer Programming Tools, Computational Logic, Scrum (Software Development), Applied Machine Learning, Budget Management, Calculus, Econometrics, Experiment, Feature Engineering, Graphic Design, Other Programming Languages, Sales, Software Architecture, Software Testing, System Programming, Visual Design, Artificial Neural Networks, Emotional Intelligence, Market Analysis, NoSQL, Statistical Visualization, Data Warehousing, Strategy, Basic Descriptive Statistics, Computational Thinking, Data Analysis Software, Exploratory Data Analysis, Investment Management, Material Handling, Organizational Development, Product Lifecycle, Risk Management, Amazon Web Services, Big Data, Cloud Platforms, Culture, Decision Making, Graphics Software, Human Resources, Microarchitecture, Security Strategy, Application Development, Computer Security Models, Network Model, Operational Analysis, Product Design, Reinforcement Learning, Software Security, System Security, User Research, Plot (Graphics), R Programming, Account Management, Banking, BlockChain, Business Process Management, C Programming Language Family, Contract Management, Data Architecture, FinTech, Financial Accounting, Financial Management, Geovisualization, Inventory Management, Management Accounting, Markov Model, Matlab, Natural Language Processing, Operations Management, Planning, Product Management, Spreadsheet Software, Storytelling, Supplier Relationship Management, Computer Science, Computer Security Incident Management, Data Science, Dimensionality Reduction, Forecasting, Journalism, Leadership Development, Network Analysis, Network Security, System Software

      학위 취득

      Degree · 1-4 Years

    • Placeholder
      Placeholder
      University of Colorado Boulder

      Master of Science in Electrical Engineering

      획득할 기술: Theoretical Computer Science, Probability & Statistics, General Statistics, Algorithms, Data Management, Mathematics, Strategy and Operations, Computer Architecture, Databases, Leadership and Management, Communication, Hardware Design, Statistical Programming, Operating Systems, Machine Learning, Research and Design, Data Analysis, Finance, Computer Programming, SQL, Writing, Regression, Business Analysis, Data Structures, Project Management, Software Engineering, Business Communication, Probability Distribution, Entrepreneurship, Database Design, Statistical Tests, Computer Graphics, Computer Networking, Design and Product, Statistical Analysis, Accounting, Systems Design, Human Computer Interaction, Data Model, Database Administration, Database Application, Database Theory, Machine Learning Algorithms, Statistical Machine Learning, PostgreSQL, Estimation, Data Visualization, Problem Solving, Operations Research, Internet Of Things, Network Architecture, Applied Mathematics, Computer Vision, Graph Theory, Deep Learning, Geometry, User Experience, Marketing, Computer Graphic Techniques, Mathematical Theory & Analysis, Programming Principles, Python Programming, Supply Chain and Logistics, Algebra, Cryptography, Business Psychology, Interactive Design, Critical Thinking, Security Engineering, Data Mining, Correlation And Dependence, Distributed Computing Architecture, Financial Analysis, Linear Algebra, Linux, User Experience Design, Cost Accounting, Differential Equations, Cloud Computing, Cyberattacks, Computer Programming Tools, Computational Logic, Scrum (Software Development), Applied Machine Learning, Budget Management, Calculus, Econometrics, Experiment, Feature Engineering, Graphic Design, Other Programming Languages, Sales, Software Architecture, Software Testing, System Programming, Visual Design, Artificial Neural Networks, Emotional Intelligence, Market Analysis, NoSQL, Statistical Visualization, Data Warehousing, Strategy, Basic Descriptive Statistics, Computational Thinking, Data Analysis Software, Exploratory Data Analysis, Investment Management, Material Handling, Organizational Development, Product Lifecycle, Risk Management, Amazon Web Services, Big Data, Cloud Platforms, Culture, Decision Making, Graphics Software, Human Resources, Microarchitecture, Security Strategy, Application Development, Computer Security Models, Network Model, Operational Analysis, Product Design, Reinforcement Learning, Software Security, System Security, User Research, Plot (Graphics), R Programming, Account Management, Banking, BlockChain, Business Process Management, C Programming Language Family, Contract Management, Data Architecture, FinTech, Financial Accounting, Financial Management, Geovisualization, Inventory Management, Management Accounting, Markov Model, Matlab, Natural Language Processing, Operations Management, Planning, Product Management, Spreadsheet Software, Storytelling, Supplier Relationship Management, Computer Science, Computer Security Incident Management, Data Science, Dimensionality Reduction, Forecasting, Journalism, Leadership Development, Network Analysis, Network Security, System Software

      학위 취득

      Degree · 1-4 Years

    • Placeholder

      무료

      Placeholder
      Yale University

      Everyday Parenting: The ABCs of Child Rearing

      획득할 기술: Communication, Research and Design, Operations Research, Strategy and Operations

      4.9

      (2.6k개의 검토)

      Beginner · Course · 1-4 Weeks

    • Placeholder
      Placeholder
      SAS

      Launching Machine Learning: Delivering Operational Success with Gold Standard ML Leadership

      획득할 기술: Machine Learning, Applied Machine Learning, Big Data, Business Analysis, Data Analysis, Data Management, General Statistics, Probability & Statistics, Statistical Analysis, Strategy and Operations, Data Science

      4.8

      (69개의 검토)

      Beginner · Course · 1-4 Weeks

    • Placeholder
      Placeholder
      DeepLearning.AI

      Build Basic Generative Adversarial Networks (GANs)

      획득할 기술: Artificial Neural Networks, Machine Learning, Machine Learning Algorithms, Machine Learning Software, Python Programming, Statistical Programming, Deep Learning, Applied Machine Learning, Computer Programming, Computer Vision

      4.7

      (1.7k개의 검토)

      Intermediate · Course · 1-4 Weeks

    • Placeholder
      Placeholder
      Lund University

      AI & Law

      획득할 기술: Machine Learning, Computational Thinking

      4.8

      (244개의 검토)

      Mixed · Course · 1-4 Weeks

    • Placeholder
      Placeholder
      University of Illinois at Urbana-Champaign

      IoT Devices

      획득할 기술: Computer Architecture, Computer Networking, Internet Of Things, Software Engineering, Network Architecture, Computer Graphics, Human Computer Interaction, Interactive Design, Computer Programming, Microarchitecture, Network Model, Network Security, Python Programming, Security Engineering, Statistical Programming, Theoretical Computer Science

      4.7

      (106개의 검토)

      Intermediate · Course · 1-4 Weeks

    reinforcement learning과(와) 관련된 검색

    reinforcement learning in finance
    reinforcement learning for trading strategies
    reinforcement learning: qwik start
    a complete reinforcement learning system (capstone)
    fundamentals of reinforcement learning
    unsupervised learning, recommenders, reinforcement learning
    machine learning and reinforcement learning in finance
    deep learning and reinforcement learning
    1…4567

    요약하자면, 여기에 가장 인기 있는 reinforcement learning 강좌 10개가 있습니다.

    • An Introduction to Practical Deep Learning: Intel
    • Master of Science in Machine Learning and Data Science: Imperial College London
    • Spacecraft Dynamics and Control: University of Colorado Boulder
    • Master of Science in Data Science: University of Colorado Boulder
    • Detect and Mitigate Ethical Risks: CertNexus
    • Master of Engineering in Engineering Management: University of Colorado Boulder
    • Master of Science in Electrical Engineering: University of Colorado Boulder
    • Everyday Parenting: The ABCs of Child Rearing: Yale University
    • Launching Machine Learning: Delivering Operational Success with Gold Standard ML Leadership: SAS
    • Build Basic Generative Adversarial Networks (GANs): DeepLearning.AI

    Machine Learning에서 학습할 수 있는 스킬

    Python 프로그래밍 (33)
    TensorFlow (32)
    심층 학습 (30)
    인공 신경 회로망 (24)
    빅 데이터 (18)
    통계 분류 (17)
    강화 학습 (13)
    대수학 (10)
    베이지안 (10)
    선형 대수 (10)
    선형 회귀 (9)
    Numpy (9)

    강화 학습에 대한 자주 묻는 질문

    • Reinforcement learning is a machine learning paradigm in which software agents use a process of trial and error to learn how to complete tasks in a way that maximizes cumulative rewards as defined by their programmers. In contrast to supervised learning paradigms, reinforcement learning systems do not need labeled input/output pairs or explicit corrections of suboptimal actions; and, in contrast to unsupervised learning, reinforcement learning defines an explicit goal, which is the maximization of the value returned by the Q-learning (or “quality” learning) algorithm as a result of its actions.

      Because it combines the goal orientation of supervised learning with the flexibility of unsupervised learning, reinforcement learning is very important in creating artificial intelligence (AI) applications requiring successful problem-solving in complex situations. For example, they are often used in financial engineering to develop optimal trading algorithms for the stock market. They are also used to build intelligent systems to allow robots and self-driving cars to navigate real-world environments safely.‎

    • As one of the main paradigms for machine learning, reinforcement learning is an essential skill for careers in this fast-growing field. Reinforcement learning is particularly important for developing artificially intelligent digital agents for real-world problem-solving in industries like finance, automotive, robotics, logistics, and smart assistants. According to Glassdoor, the average annual salary for machine learning engineers in America is $114,121 per year, a high level of pay which reflects the high level of demand for this expertise.‎

    • Absolutely. Coursera hosts a wide variety of courses in reinforcement learning and related topics in machine learning, as well as the use of these techniques in applied contexts such as finance and self-driving cars. These courses and Specializations are offered by top-ranked institutions in this field, including the deepmind.ai, New York University, the University of Toronto, and the University of Alberta’s Machine Intelligence Institute. You can learn remotely on a flexible schedule while still getting feedback from expert professors and instructors, ensuring that you’ll get a high quality education with all the reinforcement you need to learn these valuable skills with confidence.‎

    • Because reinforcement learning itself isn't a beginner-level subject, you'll need to have a good grasp on the fundamentals of machine learning before starting to learn it. Additionally, many courses will require you to have a strong background in high-level mathematics such as linear algebra, statistics, and probability. Most courses will require you to be proficient in Python, although people familiar with other programming languages like C++, Matlab, and JavaScript can often use those skills to help them learn reinforcement learning. Having the ability to implement algorithms from pseudocode may be another prerequisite. As you progress, you'll gain skills in using reinforcement learning solutions to solve problems with probabilistic artificial intelligence, function approximation, and intelligent systems.‎

    • People best suited to roles within the reinforcement learning realm should have a passion for machine learning with a drive for analytics and data and an interest in providing frontline support to solve real-world problems while leveraging innate creative problem-solving skills. Additionally, many companies like to see that candidates have strong communication skills and the ability to collaborate across disciplines and departments. There are a variety of roles associated with reinforcement learning, including analysts, engineers, and researchers. In late February 2021, there were more than 1,800 job listings for people proficient in reinforcement learning on LinkedIn.‎

    • If you want to be a part of the future of machine learning, learning reinforcement learning may be a good move for you. This innovative machine learning technique creates an algorithm that learns through trial and error, leading to a combination of short- and long-term rewards such as the ability to define sequences to solve problems using a reward-based learning approach. It's useful across multiple industries, including the tech industry, business, advertising, finance, and e-commerce, all of which find reinforcement learning useful in part because of its ability to offer greater personalization. Ultimately, if you want to work within AI and machine learning, this could be a step to advancing your goals.‎

    이 FAQ 콘텐츠는 정보 전달 목적만으로 사용할 수 있습니다. 학습자는 과정 및 기타 학점 정보가 개인적, 직업적 및 재정적 목표에 부합하는지 확인하기 위해 추가 조사를 수행하는 것이 좋습니다.
    살펴볼 만한 다른 주제
    Placeholder
    예술 & 인문학
    338개의 강좌
    Placeholder
    비즈니스
    1095개의 강좌
    Placeholder
    컴퓨터 공학
    668개의 강좌
    Placeholder
    데이터 과학
    425개의 강좌
    Placeholder
    정보 기술
    145개의 강좌
    Placeholder
    건강
    471개의 강좌
    Placeholder
    수학 및 논리
    70개의 강좌
    Placeholder
    자기개발
    137개의 강좌
    Placeholder
    물리 과학 및 공학
    413개의 강좌
    Placeholder
    사회 과학
    401개의 강좌
    Placeholder
    언어 학습
    150개의 강좌

    Coursera Footer

    경력을 시작하거나 쌓기

    • Google 데이터 분석가
    • Google 디지털 마케팅 및 전자 상거래 전문 자격증
    • Python을 통한 Google IT 자동화 전문 자격증
    • Google IT 지원
    • Google 프로젝트 관리
    • Google UX 디자인
    • Google 클라우드 자격증: 클라우드 아키텍트 취득 준비
    • IBM 사이버 보안 분석가
    • IBM 데이터 분석가
    • IBM 데이터 엔지니어링
    • IBM 데이터 과학
    • IBM 풀스택 클라우드 개발자
    • IBM 기계 학습
    • Intuit 부기
    • Meta 프런트 엔드 개발자
    • DeepLearning.AI TensorFlow 개발자 전문 자격증
    • SAS 프로그래머 전문 자격증
    • 경력 시작
    • 수료증 취득 준비
    • 경력 쌓기
    • Python 구문 오류를 찾아내는 방법
    • Python 예외를 발견하는 방법
    • 모든 프로그래밍 자습서 보기

    인기 강좌 및 수료증

    • 무료 강좌
    • 인공 지능 강좌
    • 블록체인 강좌
    • 컴퓨터 공학 강좌
    • Cursos Gratis
    • 사이버 보안 강좌
    • 데이터 분석 강좌
    • 데이터 과학 강좌
    • 영어 말하기 강좌
    • 풀스택 웹 개발 강좌
    • Google 강좌
    • 인사 강좌
    • IT 강좌
    • 영어 학습 강좌
    • Microsoft Excel 강좌
    • 제품 관리 강좌
    • 프로젝트 관리 강좌
    • Python 강좌
    • SQL 강좌
    • 애자일 수료증
    • CAPM 수료증
    • CompTIA A+ 수료증
    • 데이터 분석 수료증
    • 스크럼 마스터 수료증
    • 모든 강좌 보기

    인기 컬렉션 및 문서

    • 하루만에 완료할 수 있는 무료 온라인 강좌
    • 인기 무료 강좌
    • 비즈니스 직무
    • 사이버 보안 직무
    • 신입 IT 직무
    • 데이터 분석가 면접 질문
    • 데이터 분석 프로젝트
    • 데이터 분석가로 취업하는 방법
    • 프로젝트 관리자로 취업하는 방법
    • IT 기술
    • 프로젝트 관리자 면접 질문
    • Python 프로그래밍 기술
    • 면접에서 물어보는 강점과 약점
    • 데이터 분석가가 하는 일
    • 소프트웨어 엔지니어가 하는 일
    • 데이터 엔지니어란
    • 데이터 과학자란
    • 제품 디자이너란
    • 스크럼 마스터란
    • UX 리서처란
    • PMP 수료증을 취득하는 방법
    • PMI 수료증
    • 인기 있는 사이버 보안 자격증
    • 인기 있는 SQL 자격증
    • 모든 Coursera 문서 읽기

    온라인으로 학위 또는 자격증 취득

    • Google 전문 자격증
    • 전문 자격증
    • 모든 자격증 보기
    • 학사 학위
    • 석사 학위
    • 컴퓨터 공학 학위
    • 데이터 과학 학위
    • MBA 및 경영학 학위
    • 데이터 분석 학위
    • 공중 보건 학위
    • 사회 과학 학위
    • 관리 학위
    • BA 및 BS 학위 비교
    • 학사 학위란 무엇인가요?
    • 개발해야 할 11가지 좋은 학습 습관
    • 추천서를 작성하는 방법
    • 비즈니스 학위 취득 후 취업 가능한 10개의 수요가 높은 직무
    • 컴퓨터 공학 석사 학위는 취득할 만한 가치가 있나요?
    • 모든 학위 프로그램 보기
    • Coursera 인도
    • Coursera 영국
    • Coursera 멕시코

    Coursera

    • 소개
    • 제공 내용
    • 리더십
    • 직업
    • 카탈로그
    • Coursera Plus
    • 전문 자격증
    • MasterTrack® 자격증
    • 학위
    • 기업용 Coursera
    • 정부용
    • 캠퍼스용
    • 파트너가 되기
    • 코로나바이러스감염증-19 대응

    커뮤니티

    • 학습자
    • 파트너
    • 베타 테스터
    • 번역가
    • 블로그
    • 기술 블로그
    • 지도 센터

    기타

    • 보도 자료
    • 투자자
    • 조건
    • 개인정보 보호
    • 도움말
    • 접근성
    • 문의하기
    • 문서
    • 디렉토리
    • 계열사
    • 현대 노예 선언문
    어디에서나 학습
    Placeholder
    Placeholder
    Placeholder
    © 2023 Coursera Inc. All rights reserved.
    • Placeholder
    • Placeholder
    • Placeholder
    • Placeholder
    • Placeholder