Chevron Left
Build Basic Generative Adversarial Networks (GANs)(으)로 돌아가기

deeplearning.ai의 Build Basic Generative Adversarial Networks (GANs) 학습자 리뷰 및 피드백

4.7
별점
1,627개의 평가

강좌 소개

In this course, you will: - Learn about GANs and their applications - Understand the intuition behind the fundamental components of GANs - Explore and implement multiple GAN architectures - Build conditional GANs capable of generating examples from determined categories The DeepLearning.AI Generative Adversarial Networks (GANs) Specialization provides an exciting introduction to image generation with GANs, charting a path from foundational concepts to advanced techniques through an easy-to-understand approach. It also covers social implications, including bias in ML and the ways to detect it, privacy preservation, and more. Build a comprehensive knowledge base and gain hands-on experience in GANs. Train your own model using PyTorch, use it to create images, and evaluate a variety of advanced GANs. This Specialization provides an accessible pathway for all levels of learners looking to break into the GANs space or apply GANs to their own projects, even without prior familiarity with advanced math and machine learning research....

최상위 리뷰

HL

2022년 3월 10일

Great introductory to GANs, focused on the building blocks to neural net/ GANs, and a bit of frequently used models. Might need a small update on what's considered "state-of-the-art" in the course.

WM

2020년 10월 1일

The course provides good insight into the world of GANs. I really enjoyed Sharon's explanations which were deep and easy to understand. I really recommend this course to anyone interested in AI.

필터링 기준:

Build Basic Generative Adversarial Networks (GANs)의 385개 리뷰 중 376~385

교육 기관: Keebeom Y

2021년 8월 17일

교육 기관: Ivan V S

2021년 8월 23일

교육 기관: Christoffer M

2021년 3월 4일

교육 기관: Daniil K

2021년 8월 28일

교육 기관: Fatemeh A

2021년 6월 11일

교육 기관: Yu G

2021년 1월 17일

교육 기관: Daniel J

2021년 2월 27일

교육 기관: Ranga R S

2021년 2월 11일

교육 기관: Michael S

2021년 2월 7일

교육 기관: Scott A

2021년 7월 20일