Data analysis has replaced data acquisition as the bottleneck to evidence-based decision making --- we are drowning in it. Extracting knowledge from large, heterogeneous, and noisy datasets requires not only powerful computing resources, but the programming abstractions to use them effectively. The abstractions that emerged in the last decade blend ideas from parallel databases, distributed systems, and programming languages to create a new class of scalable data analytics platforms that form the foundation for data science at realistic scales.
제공자:


이 강좌에 대하여
직원에게 수요가 높은 기술을 교육하면 회사가 이점을 얻을 수 있습니까?
비즈니스를 위한 Coursera 경험해 보기귀하가 습득할 기술
- Relational Algebra
- Python Programming
- Mapreduce
- SQL
직원에게 수요가 높은 기술을 교육하면 회사가 이점을 얻을 수 있습니까?
비즈니스를 위한 Coursera 경험해 보기제공자:
강의 계획표 - 이 강좌에서 배울 내용
Data Science Context and Concepts
Relational Databases and the Relational Algebra
MapReduce and Parallel Dataflow Programming
NoSQL: Systems and Concepts
Graph Analytics
검토
- 5 stars57.23%
- 4 stars25.39%
- 3 stars9.07%
- 2 stars4.73%
- 1 star3.55%
DATA MANIPULATION AT SCALE: SYSTEMS AND ALGORITHMS의 최상위 리뷰
Comprehensive and clear explanation of theory and interlinks of the up-to-date tools, languages, tendencies. Kudos and thanks to Bill Howe.
Highly recommended.
Very good course, but lectures could be more tuned onto the home assignments. A lot of independent work for me at least. Teacher is very good.
The course is very coherent and comprehensive. It covers only important aspects of the fields. Also, the exercises are very well prepared.
- great and very useful overview of concepts important in big data that does not get bogged down in random details
- interesting and sufficiently challenging assignments
대규모 데이터 과학 특화 과정 정보

자주 묻는 질문
강의 및 과제를 언제 이용할 수 있게 되나요?
이 전문 분야를 구독하면 무엇을 이용할 수 있나요?
재정 지원을 받을 수 있나요?
궁금한 점이 더 있으신가요? 학습자 도움말 센터를 방문해 보세요.