Chevron Left
Deep Learning Applications for Computer Vision(으)로 돌아가기

콜로라도 대학교 볼더 캠퍼스의 Deep Learning Applications for Computer Vision 학습자 리뷰 및 피드백

4.5
별점
36개의 평가

강좌 소개

This course can be taken for academic credit as part of CU Boulder’s Master of Science in Data Science (MS-DS) degree offered on the Coursera platform. The MS-DS is an interdisciplinary degree that brings together faculty from CU Boulder’s departments of Applied Mathematics, Computer Science, Information Science, and others. With performance-based admissions and no application process, the MS-DS is ideal for individuals with a broad range of undergraduate education and/or professional experience in computer science, information science, mathematics, and statistics. Learn more about the MS-DS program at https://www.coursera.org/degrees/master-of-science-data-science-boulder. In this course, you’ll be learning about Computer Vision as a field of study and research. First we’ll be exploring several Computer Vision tasks and suggested approaches, from the classic Computer Vision perspective. Then we’ll introduce Deep Learning methods and apply them to some of the same problems. We will analyze the results and discuss advantages and drawbacks of both types of methods. We'll use tutorials to let you explore hands-on some of the modern machine learning tools and software libraries. Examples of Computer Vision tasks where Deep Learning can be applied include: image classification, image classification with localization, object detection, object segmentation, facial recognition, and activity or pose estimation....

최상위 리뷰

JP

2022년 1월 2일

Great introductory course on deep learning for computer vision.

DM

2022년 6월 16일

Learnt many things and most exciting was Python code part

필터링 기준:

Deep Learning Applications for Computer Vision의 8개 리뷰 중 1~8

교육 기관: Carlos A V S

2022년 5월 19일

교육 기관: Erik S

2022년 3월 5일

교육 기관: Joed H P

2022년 1월 3일

교육 기관: Allyson D d L

2022년 6월 17일

교육 기관: Debasree M

2022년 6월 17일

교육 기관: BERGOR B B

2022년 3월 5일

교육 기관: Abhishek R

2022년 7월 23일

교육 기관: Alessandro C

2022년 11월 28일