This course covers designing and building a TensorFlow input data pipeline, building ML models with TensorFlow and Keras, improving the accuracy of ML models, writing ML models for scaled use, and writing specialized ML models.
제공자:
이 강좌에 대하여
직원에게 수요가 높은 기술을 교육하면 회사가 이점을 얻을 수 있습니까?
비즈니스를 위한 Coursera 경험해 보기배울 내용
Create TensorFlow and Keras machine learning models and understand their key components
Use the tf.data library to manipulate data and large datasets
Use the Keras Sequential and Functional APIs for simple and advanced model creation
Train, deploy, and productionalize ML models at scale with Vertex AI
귀하가 습득할 기술
- Machine Learning
- Python Programming
- Build Input Data Pipeline
- Tensorflow
- keras
직원에게 수요가 높은 기술을 교육하면 회사가 이점을 얻을 수 있습니까?
비즈니스를 위한 Coursera 경험해 보기제공자:
강의 계획표 - 이 강좌에서 배울 내용
Introduction to the Course
Introduction to the TensorFlow ecosystem
Design and Build an Input Data Pipeline
Building Neural Networks with the TensorFlow and Keras API
Training at Scale with Vertex AI
Summary
검토
- 5 stars61.90%
- 4 stars25.10%
- 3 stars8.93%
- 2 stars2.54%
- 1 star1.51%
TENSORFLOW ON GOOGLE CLOUD의 최상위 리뷰
A good understanding of bash cmds and a well-digested understanding of the course material is required to perform the labs. Quite challenging.
Quite a technical course with sophisticated lab sessions, but I got good hands-on experience on building NN models using Keras and TF functional API as well as deploying the model in Vertex AI.
The procedure to connect to the cloud datalab was time consuming to do it every time.
Suggestion : More topics in Core Tensorflow could be added. I enjoyed the course!
Pretty helpful in getting to know the various levels of abstractions of tensorflow API and avoiding various pitfalls while building the Tensorflow model
자주 묻는 질문
등록 전에 강좌를 미리 볼 수 있나요?
등록하면 무엇을 이용할 수 있나요?
강좌 수료증을 언제 받게 되나요?
이 강좌를 청강할 수 없는 이유는 무엇인가요?
궁금한 점이 더 있으신가요? 학습자 도움말 센터를 방문해 보세요.