Optimizing Performance of LookML Queries

학습자는 이 프로젝트에서 다음을 수행하게 됩니다.
1 hour 30 minutes
중급
다운로드 필요 없음
공유 가능한 수료증
영어
데스크톱 전용

This is a Google Cloud Self-Paced Lab. In this lab, you'll learn the best methods to optimize query performance in Looker. Looker is a modern data platform in Google Cloud that you can use to analyze and visualize your data interactively. You can use Looker to do in-depth data analysis, integrate insights across different data sources, build actionable data-driven workflows, and create custom data applications. Big, complex queries can be costly, and running them repeatedly strains your database, thereby reducing performance. Ideally, you want to avoid re-running massive queries if nothing has changed, and instead, append new data to existing results to reduce repetitive requests. Although there are many ways to optimize performance of LookML queries, this lab focuses on the most commonly used methods to optimize query performance in Looker: persistent derived tables, aggregate awareness, and performantly joining views.

개발할 기술

  • Looker

  • Google Cloud Platform

  • LookML

  • Complex Data Queries

  • Data Analysis

프로젝트 작동 방식

대화형 실습 환경에서 새로운 도구 또는 기술을 배우세요.

클라우드 작업 영역에서 소프트웨어 및 도구에 접근할 수 있으며 다운로드할 필요가 없습니다.

제공자:

Placeholder

Google 클라우드

자주 묻는 질문