Handling Missing Values in R using tidyr

제공자:
학습자는 이 안내 프로젝트에서 다음을 수행하게 됩니다.
2 hours
중급
다운로드 필요 없음
분할 화면 동영상
영어
데스크톱 전용

Missing data can be a “serious” headache for data analysts and scientists. This project-based course Handling Missing Values in R using tidyr is for people who are learning R and who seek useful ways for data cleaning and manipulation in R. In this project-based course, we will not only talk about missing values, but we will spend a great deal of our time here hands-on on how to handle missing value cases using the tidyr package. Be rest assured that you will learn a ton of good work here. By the end of this 2-hour-long project, you will calculate the proportion of missing values in the data and select columns that have missing values. Also, you will be able to use the drop_na(), replace_na(), and fill() function in the tidyr package to handle missing values. By extension, we will learn how to chain all the operations using the pipe function. This project-based course is an intermediate level course in R. Therefore, to complete this project, it is required that you have prior experience with using R. I recommend that you should complete the projects titled: “Getting Started with R” and “Data Manipulation with dplyr in R“ before you take this current project. These introductory projects in using R will provide every necessary foundation to complete this current project. However, if you are comfortable with using R, please join me on this wonderful ride! Let’s get our hands dirty!

개발할 기술

  • Missing Data

  • Data Manipulation

  • tidyr

  • R Programming

  • dplyr

단계별 학습

작업 영역이 있는 분할 화면으로 재생되는 동영상에서 강사는 다음을 단계별로 안내합니다.

안내형 프로젝트 진행 방식

작업 영역은 브라우저에 바로 로드되는 클라우드 데스크톱으로, 다운로드할 필요가 없습니다.

분할 화면 동영상에서 강사가 프로젝트를 단계별로 안내해 줍니다.

자주 묻는 질문