Create a Superhero Name Generator with TensorFlow
31개의 평가

1,528명이 이미 등록했습니다.
Natural language generation with a deep learning model
Using tokenizer in TensorFlow
인터뷰에서 이 안내형 체험 보여주기
31개의 평가
1,528명이 이미 등록했습니다.
Natural language generation with a deep learning model
Using tokenizer in TensorFlow
인터뷰에서 이 안내형 체험 보여주기
In this guided project, we are going to create a neural network and train it on a small dataset of superhero names to learn to generate similar names. The dataset has over 9000 names of superheroes, supervillains and other fictional characters from a number of different comic books, TV shows and movies. Text generation is a common natural language processing task. We will create a character level language model that will predict the next character for a given input sequence. In order to get a new predicted superhero name, we will need to give our model a seed input - this can be a single character or a sequence of characters, and the model will then generate the next character that it predicts should after the input sequence. This character is then added to the seed input to create a new input, which is then used again to generate the next character, and so on. You will need prior programming experience in Python. Some experience with TensorFlow is recommended. This is a practical, hands on guided project for learners who already have theoretical understanding of Neural Networks, Recurrent Neural Networks, and optimization algorithms like gradient descent but want to understand how to use the TensorFlow to start performing natural language processing tasks like text classification or text generation. Note: This course works best for learners who are based in the North America region. We’re currently working on providing the same experience in other regions.
Prior programming experience in Python. Conceptual understanding of Neural Networks. Prior experience with TensorFlow and Keras is recommended.
Natural Language Processing
Deep Learning
Machine Learning
Tensorflow
Natural Language Generation
작업 영역이 있는 분할 화면으로 재생되는 동영상에서 강사는 다음을 단계별로 안내합니다.
Introduction
Data and Tokenizer
Names and Sequences
Creating Examples
Training and Validation Sets
Creating the Model
Training the Model
Generating Names
작업 영역은 브라우저에 바로 로드되는 클라우드 데스크톱으로, 다운로드할 필요가 없습니다.
분할 화면 동영상에서 강사가 프로젝트를 단계별로 안내해 줍니다.
MS 제공
2021년 4월 23일Course doen't generate tangible outcome. It leaves you at a hangover. Otherwise this course is good.
AJ 제공
2022년 1월 2일Instructor has a very clear and smooth flow of teaching. Every step of the project is properly explained. Prior Tensorflow knowledge can be helpful though not necessary.
RS 제공
2021년 10월 3일I gained more knowledge about machine learning from this project.
GA 제공
2021년 9월 20일The course is good and the way of explaination by lecturers is excellent.
귀하의 작업 영역에는 노트북이나 데스크톱 컴퓨터에 맞게 용량이 지정된 클라우드 데스크톱이 포함되어 있으므로 모바일 기기에서는 안내 프로젝트를 이용할 수 없습니다.
안내 프로젝트 강사는 해당 주제의 전문가로서, 해당 프로젝트 영역이나 도구, 기술에 대한 경험이 풍부하며 전 세계 수백만 명의 학습자와 지식을 적극적으로 공유합니다.
안내 프로젝트에서 생성된 파일은 모두 다운로드하고 보관할 수 있습니다. 클라우드 데스크톱에 접속한 상태에서 '파일 브라우저'를 사용하여 파일을 다운로드할 수 있습니다.
페이지 상단에서 이 안내 프로젝트에 대한 경험 수준을 누르면 우선적으로 알아야 하는 지식을 확인할 수 있습니다. 안내 프로젝트의 단계마다 강사가 차례대로 안내해 드립니다.
네, 브라우저를 통해 이용할 수 있는 클라우드 데스크톱에서 안내 프로젝트 완료에 필요한 모든 것을 이용할 수 있습니다.
브라우저의 분할 화면 환경에서 바로 작업을 완료하여 학습할 수 있습니다. 화면 왼쪽에 있는 작업 영역에서 작업을 완료할 수 있습니다. 화면 오른쪽에서는 강사의 단계별 프로젝트 안내를 볼 수 있습니다.
궁금한 점이 더 있으신가요? 학습자 도움말 센터를 방문해 보세요.