- Bayesian Statistics
- Machine Learning
- Mathematics
- Probability
- Linear Regression
- Linear Equation
- Eigenvalues And Eigenvectors
- Linear Algebra
- Determinants
- Calculus
- Mathematical Optimization
- Gradient Descent
Mathematics for Machine Learning and Data Science 특화 과정
Master the Toolkit of AI and Machine Learning. Mathematics for Machine Learning and Data Science is a beginner-friendly Specialization where you’ll learn the fundamental mathematics toolkit of machine learning: calculus, linear algebra, statistics, and probability.
제공자:


배울 내용
A deep understanding of the math that makes machine learning algorithms work.
Statistical techniques that empower you to get more out of your data analysis.
Fundamental skills that employers desire, helping you ace machine learning interview questions and land your dream job.
Represent data as vectors and matrices and identify their properties using concepts of singularity, rank, and linear independence
귀하가 습득할 기술
이 전문 분야 정보
응용 학습 프로젝트
By the end of this Specialization, you will be ready to:
Represent data as vectors and matrices and identify their properties using concepts of singularity, rank, and linear independence
Apply common vector and matrix algebra operations like dot product, inverse, and determinants
Express certain types of matrix operations as linear transformations
Apply concepts of eigenvalues and eigenvectors to machine learning problems
Optimize different types of functions commonly used in machine learning
Perform gradient descent in neural networks with different activation and cost functions
Describe and quantify the uncertainty inherent in predictions made by machine learning models
Understand the properties of commonly used probability distributions in machine learning and data science
Apply common statistical methods like MLE and MAP
Assess the performance of machine learning models using interval estimates and margin of errors
Apply concepts of statistical hypothesis testing
직원에게 수요가 높은 기술을 교육하면 회사가 이점을 얻을 수 있습니까?
비즈니스를 위한 Coursera 경험해 보기직원에게 수요가 높은 기술을 교육하면 회사가 이점을 얻을 수 있습니까?
비즈니스를 위한 Coursera 경험해 보기특화 과정 이용 방법
강좌 수강
Coursera 특화 과정은 한 가지 기술을 완벽하게 습득하는 데 도움이 되는 일련의 강좌입니다. 시작하려면 특화 과정에 직접 등록하거나 강좌를 둘러보고 원하는 강좌를 선택하세요. 특화 과정에 속하는 강좌에 등록하면 해당 특화 과정 전체에 자동으로 등록됩니다. 단 하나의 강좌만 수료할 수도 있으며, 학습을 일시 중지하거나 언제든 구독을 종료할 수 있습니다. 학습자 대시보드를 방문하여 강좌 등록 상태와 진도를 추적해 보세요.
실습 프로젝트
모든 특화 과정에는 실습 프로젝트가 포함되어 있습니다. 특화 과정을 완료하고 수료증을 받으려면 프로젝트를 성공적으로 마쳐야 합니다. 특화 과정에 별도의 실습 프로젝트 강좌가 포함되어 있는 경우, 다른 모든 강좌를 완료해야 프로젝트 강좌를 시작할 수 있습니다.
수료증 취득
모든 강좌를 마치고 실습 프로젝트를 완료하면 취업할 때나 전문가 네트워크에 진입할 때 제시할 수 있는 수료증을 취득할 수 있습니다.

제공자:
자주 묻는 질문
What is the refund policy?
Can I just enroll in a single course?
Is financial aid available?
Can I take the course for free?
Is this course really 100% online? Do I need to attend any classes in person?
I’m not good at math, is this course still for me?
What areas of mathematics will I learn in this course?
Why is mathematics for machine learning and data science important?
How long does it take to complete the Specialization?
What background knowledge is necessary?
Do I need to take the courses in a specific order?
Will I earn university credit for completing the Specialization?
What will I be able to do after completing Mathematics for Machine Learning and Data Science?
Is this a standalone course or a Specialization?
Do I need to take the courses in a specific order?
Can I apply for financial aid?
How much does the Specialization cost?
Can I apply for financial aid?
Can I audit the Specialization?
Will I receive a certificate at the end of the Specialization?
I want to purchase this Specialization for my employees. How can I do that?
How do I get a receipt to get this reimbursed by my employer?
Are all courses of this Specialization ready for enrollment?
궁금한 점이 더 있으신가요? 학습자 도움말 센터를 방문해 보세요.