Chevron Left
Machine Learning: Classification(으)로 돌아가기

워싱턴 대학교의 Machine Learning: Classification 학습자 리뷰 및 피드백

3,685개의 평가

강좌 소개

Case Studies: Analyzing Sentiment & Loan Default Prediction In our case study on analyzing sentiment, you will create models that predict a class (positive/negative sentiment) from input features (text of the reviews, user profile information,...). In our second case study for this course, loan default prediction, you will tackle financial data, and predict when a loan is likely to be risky or safe for the bank. These tasks are an examples of classification, one of the most widely used areas of machine learning, with a broad array of applications, including ad targeting, spam detection, medical diagnosis and image classification. In this course, you will create classifiers that provide state-of-the-art performance on a variety of tasks. You will become familiar with the most successful techniques, which are most widely used in practice, including logistic regression, decision trees and boosting. In addition, you will be able to design and implement the underlying algorithms that can learn these models at scale, using stochastic gradient ascent. You will implement these technique on real-world, large-scale machine learning tasks. You will also address significant tasks you will face in real-world applications of ML, including handling missing data and measuring precision and recall to evaluate a classifier. This course is hands-on, action-packed, and full of visualizations and illustrations of how these techniques will behave on real data. We've also included optional content in every module, covering advanced topics for those who want to go even deeper! Learning Objectives: By the end of this course, you will be able to: -Describe the input and output of a classification model. -Tackle both binary and multiclass classification problems. -Implement a logistic regression model for large-scale classification. -Create a non-linear model using decision trees. -Improve the performance of any model using boosting. -Scale your methods with stochastic gradient ascent. -Describe the underlying decision boundaries. -Build a classification model to predict sentiment in a product review dataset. -Analyze financial data to predict loan defaults. -Use techniques for handling missing data. -Evaluate your models using precision-recall metrics. -Implement these techniques in Python (or in the language of your choice, though Python is highly recommended)....

최상위 리뷰


2020년 6월 14일

A very deep and comprehensive course for learning some of the core fundamentals of Machine Learning. Can get a bit frustrating at times because of numerous assignments :P but a fun thing overall :)


2016년 10월 15일

Hats off to the team who put the course together! Prof Guestrin is a great teacher. The course gave me in-depth knowledge regarding classification and the math and intuition behind it. It was fun!

필터링 기준:

Machine Learning: Classification의 579개 리뷰 중 551~575

교육 기관: 陈弘毅

2018년 2월 3일

too simple

교육 기관: Deleted A

2020년 8월 13일


교육 기관: Omkar v D

2018년 8월 14일


교육 기관: Rohan L

2020년 8월 29일

I leave 2 stars as I learned a lot of new information and methods, and the theory and math behind them.

You will learn about Data Science and Machine Learning, but not much about Python.

The course is pretty much abandoned and outdated. Sframes and Turicreate packages (instructor's creations) are used instead of more universal packages. Installation in the beginning took some time and research. Many of the assignments have errors and bugs in the code that have not been updated. Forum assistance is abysmal for clarification or deeper questions. Many links are dead.

There are many times in the lectures where the instructors are writing several sentences in their handwriting on their notes instead of having the text ready to appear.

I would suggest using this course and series as a supplement to other information one as learned, not as an introduction for initial understanding. I found myself frustrated too many times.

교육 기관: Amit K

2018년 1월 20일

The video content is awesome. Important concepts are being clarified in a very simple manner. However the evaluation method really sucks. First, there is too much spoon feeding in the programming assignments, which was not the case in earlier courses in the same specialisation. Secondly, in a few assignments, the answer to the quiz questions are sensitive to the platform we are using (like PC vs AWS instance). This was really frustrating given that the issue is known for a long time and has not been fixed yet. At the very least, there should be a warning on the quiz page itself.

교육 기관: Yaron K

2016년 9월 30일

The assignments are well thought out and explain the algorithms step-by-step. The subtitles/transcripts are a disappointment :( . Full of mistakes. Sometimes to the point of being useless or even worse - saying the exact of opposite of what the lecturer says. Since the lecturer sometimes is unclear - this is problematic. As usual - Graphlab Create sometimes crashes, however there are explanations how to run the assignments using Scikit-Learn.

교육 기관: Matthew B

2016년 4월 4일

The content seems rather thinner than that of earlier courses in the specialization, and seems to get more so as the course progresses. (Week 6 is entirely spent on Precision and Recall, with only about 30 min of lecture.) It feels like there was a rush to get the course out and that corners may have been cut at the end.

And as others have mentioned, several very important classification topics are conspicuously missing.

교육 기관: Alois H

2017년 9월 23일

Overall good explanations in the videos; however, too much reliance on GraphLab, so that it seems more like promotional course for the instructor's own software and company. Also, the course is generally a bit light on content - the only algorithms discussed are Logistic Regression, Decision Trees and AdaBoost. Spending a full week on precision & recall is way too much time.

교육 기관:

2020년 7월 20일

This course needs to be re-created using new professors.

Way too lazy IMO.

Too many "trick questions", total confusion between Python 2.x and 3.x

Too theoretical, almost no practical examples

Quizes are very poor and give no "hints" or true workhtrough examples pror to test.

This is a problem with all Coursera, though.

교육 기관: Vasilios D

2016년 10월 5일

I am afraid that this course is, to a large extend, a marketing tool for promoting the instructors' proprietary product. Its use is therefore limited for the practitioners that want a foundation on the free Python data/ML capabilities.

I would not recommend this course to my colleagues.

교육 기관: Keith L

2016년 11월 25일

Not as polished/comprehensive as the previous courses (especially week1, week5 and week6). But useful techniques nevertheless.

교육 기관: Stefan W

2018년 10월 28일

The speaker is very difficult to understand, and the environment for writing code is awful (web browser).

교육 기관: Vladyslav P

2016년 4월 17일

Extremely highlevel, quality of the material is significantly lower than in the previous courses.

교육 기관: Enrico R

2016년 5월 15일

Course is too slow to keep focus, it's repetitive but not clear when it's really needed.

교육 기관: Liliana V P G

2016년 4월 13일

The classes are not practical, and the voice of the teacher is very monotone, boring.

교육 기관: Gaurav B

2019년 7월 4일

Explaination Is Not good I have to take help from other courses

교육 기관: SYED M I

2020년 4월 16일


교육 기관: Hernan M

2017년 9월 25일

I enrolled in this specialization to learn machine learning using GraphLab Create. Half way into the specialization the creators sold Turi, GrapLab's parent company, making it non available to the general public (not even by paying) and then all the knowledge devalued. I wish I had known this and I would have enrolled on a different specialization. The creators still give you the possibility of using numpy, scikit learn and pandas but I had already done a lot with GraphLab create. The time I invested on my nights after work became a waste. I was trying to convince the company I worked for to buy licenses for GraphLab create.

Coursera should not allow folks to create courses that promote a private license course because it would make people waste their time and money if they decide to privatize the software.

Don't take this course, and if you take it then only use GraphLab create when the authors give you no other option.

Teaching style: Carlos was good, Emily is not very clear and loses focus of the topics and often rambles. She seems very knowledgeable but she lacks clarity of exposition when compared to Carlos or Andrew Ng.

교육 기관: Charles G

2016년 8월 12일

I was pretty disappointed with this course. Firstly, the course did not seem well balanced meaning that some weeks--particularly week 2--had A LOT of materials to watch and really felt like it was two weeks crammed into one, and then other weeks barely had anything.

Secondly, the exercises seemed unclear, poorly thought out and not really helpful. There were many errata that really should have been fixed in the beta iterations of this course.

Thirdly, I really would like to see more application and less discussion of implementing algorithms.

Fourthly, the "scaling" section was also a major disappointment. While it is mildly interesting to learn about stochastic gradient descent, I think it would have been more interesting to have a discussion about how classifiers work in a parallelized computing environment or actually to try one out using Spark.

Finally, given that GraphLab/Dato/Turi was just acquired by Apple, I question whether it is worthwhile to take this course as ALL the materials are taught using a library that in all likelihood will cease to exist.

교육 기관: Yukai Z

2016년 6월 3일

The videos are fine. But, It's SIMPLY TERRIBLE to force people to pay to be able to do the quizzes. There was no such a thing in the first two courses (by the way, I gave high rates for both). It is OK to pay for the verified certificate, however, disabling the functions in the course is a wrong way to earn money, because people who want to learn the course might not necessarily want the certificate, and this is unfair to them because it limits the resources available. This whole Specialization thing starts to make me feel like you guys are in urgent need of money, rather benefiting the community. Remember there are tons of free resources on the internet, and this only undermines your strengths. You will lose tons of potential fans. Stop being seemingly arrogant.

교육 기관: Eugene K

2017년 2월 10일

If you are considering this specialization I would recommend the Andrew Ng course instead and the main reason is that it isn't depend on proprietary ML framework. Despite the good lectures, the assignments don't help you develop the knowledge required for ML developer role.

Taking in consideration the permanent postponing the courses delivery, from summer 2016 to summer 2017, finally the most interesting part of the specialization was cancelled. I'm completely disappointed with the specialization learning expirience.

교육 기관: Ehsan M

2018년 3월 22일

very Vague and in efficient in transferring the knowledge. Teachers have tendency to overcomplicate very simple ideas to look more mathematically in-depth. It is not true and just causes confusion. I ended up to look only on slide and do the exercises rather than watching their videos

교육 기관: Nikhil S

2018년 9월 7일

The Course is not of the said level and is a very convenient way of promoting their software, the faulties are non responsive n the forums

교육 기관: Christopher O

2020년 10월 20일

Could not install required software (turicreate library for python) in a Windows Environment. The course should be explicit about that.

교육 기관: Andreas

2017년 1월 4일

This specialization is delayed for months now - very annoying! Don't give them money!