Chevron Left
Optimizing Machine Learning Performance(으)로 돌아가기

Alberta Machine Intelligence Institute의 Optimizing Machine Learning Performance 학습자 리뷰 및 피드백

45개의 평가

강좌 소개

This course synthesizes everything your have learned in the applied machine learning specialization. You will now walk through a complete machine learning project to prepare a machine learning maintenance roadmap. You will understand and analyze how to deal with changing data. You will also be able to identify and interpret potential unintended effects in your project. You will understand and define procedures to operationalize and maintain your applied machine learning model. By the end of this course you will have all the tools and understanding you need to confidently roll out a machine learning project and prepare to optimize it in your business context. To be successful, you should have at least beginner-level background in Python programming (e.g., be able to read and code trace existing code, be comfortable with conditionals, loops, variables, lists, dictionaries and arrays). You should have a basic understanding of linear algebra (vector notation) and statistics (probability distributions and mean/median/mode). This is the final course of the Applied Machine Learning Specialization brought to you by Coursera and the Alberta Machine Intelligence Institute (Amii)....

최상위 리뷰


2022년 1월 19일

Very good course! I appreciate the opportunity to learn more from Alberta Machine Intelligence Institute. On the downside, Peer-graded Assignment block our progress on the course.


2021년 3월 21일

One of the finest courses about Machine Learning Optimization. The course walks you through almost all possible scenarios that will need optimization.

필터링 기준:

Optimizing Machine Learning Performance의 9개 리뷰 중 1~9

교육 기관: Abdullah A

2020년 1월 2일

교육 기관: Pankaj Z

2021년 3월 21일

교육 기관: Valery M

2020년 3월 31일

교육 기관: Marciele d M B

2022년 1월 20일

교육 기관: Emilija G

2020년 1월 9일

교육 기관: Gustavo I M V

2021년 3월 11일

교육 기관: Kalhan B

2020년 9월 12일

교육 기관: Lam C V D

2020년 8월 29일

교육 기관: Hen H

2021년 2월 19일