Coursera
  • 온라인 학위학사 및 석사 학위 살펴보기
  • MasterTrack™석사 학위를 따기 위한 학점 얻기
  • 대학교 수료증대학원 수준의 학습을 통해 경력을 쌓으세요.
경력 찾기기업용 Coursera대학교용
  • 검색
  • 상위 강좌
  • 로그인
  • 무료 회원 가입
    Coursera
    • 검색
    • Logistic Regression

    필터링 기준

    "logistic regression"에 대한 162개의 결과

    • Placeholder
      Imperial College London

      Logistic Regression in R for Public Health

      획득할 기술: General Statistics, Machine Learning, Machine Learning Algorithms, Probability & Statistics, Regression, R Programming, Statistical Programming, Bayesian Statistics

      4.8

      (328개의 검토)

      Intermediate · Course · 1-4 Weeks

    • Placeholder
      SAS

      Predictive Modeling with Logistic Regression using SAS

      획득할 기술: SAS (Software), Statistical Programming, Data Analysis, Data Mining, Machine Learning, Probability & Statistics, Regression, Statistical Analysis, Statistical Machine Learning, Exploratory Data Analysis, Machine Learning Algorithms, Statistical Tests, Advertising, Business Analysis, Computer Programming, General Statistics, Marketing, Python Programming

      4.6

      (42개의 검토)

      Intermediate · Course · 1-3 Months

    • Placeholder
      Coursera Project Network

      Logistic Regression with NumPy and Python

      획득할 기술: Computer Programming, Machine Learning, Probability & Statistics, Statistical Programming, Data Science, Python Programming

      4.5

      (387개의 검토)

      Beginner · Guided Project · Less Than 2 Hours

    • Placeholder
      Coursera Project Network

      Logistic Regression&application as Classification Algorithm

      획득할 기술: Data Analysis

      Intermediate · Guided Project · Less Than 2 Hours

    • Placeholder
      Coursera Project Network

      Logistic Regression for Classification using Julia

      획득할 기술: Machine Learning, Probability & Statistics, Data Science

      3.7

      (7개의 검토)

      Beginner · Guided Project · Less Than 2 Hours

    • Placeholder
      Coursera Project Network

      Logistic Regression with Python and Numpy

      획득할 기술: Algorithms, Machine Learning, Machine Learning Algorithms, Theoretical Computer Science, Communication, Deep Learning, Python Programming

      4.5

      (146개의 검토)

      Intermediate · Guided Project · Less Than 2 Hours

    • Placeholder
      Placeholder
      Coursera Project Network

      Logistic Regression 101: US Household Income Classification

      획득할 기술: Machine Learning, Machine Learning Algorithms, Deep Learning, Python Programming

      4.8

      (6개의 검토)

      Beginner · Guided Project · Less Than 2 Hours

    • Placeholder
      Placeholder
      Coursera Project Network

      Predict Ad Clicks Using Logistic Regression and XG-Boost

      획득할 기술: Deep Learning, Machine Learning, Python Programming

      Beginner · Guided Project · Less Than 2 Hours

    • Placeholder
      Placeholder
      University of Chicago

      Machine Learning for Analytics MasterTrack™ Certificate

      획득할 기술: Probability & Statistics, Machine Learning, General Statistics, Business Analysis, Data Analysis, Statistical Analysis, Experiment, Probability Distribution, Python Programming, Applied Machine Learning, Regression, Statistical Tests, Advertising, Algebra, Communication, Data Management, Data Structures, Linear Algebra, Machine Learning Algorithms, Marketing, Theoretical Computer Science

      학점 제공

      Mastertrack · 6-12 Months

    • Placeholder
      Placeholder
      Tufts University

      Business Analytics for Managers MasterTrack® Certificate

      획득할 기술: Data Management, Financial Analysis

      학점 제공

      Mastertrack · 6-12 Months

    • Placeholder
      Placeholder
      Arizona State University

      AI and Machine Learning MasterTrack® Certificate

      획득할 기술: Machine Learning, Theoretical Computer Science, Software Engineering, BlockChain, Finance, Software Architecture, Algorithms, Software Testing, Statistical Machine Learning, Computer Programming, Mobile Development, Deep Learning, Data Analysis, Computational Logic, Computer Architecture, Data Visualization, Databases, Mathematics, Probability & Statistics, Computational Thinking, Data Management, General Statistics, Mathematical Theory & Analysis, Programming Principles, Bayesian Network, Computer Vision, Data Mining, Data Structures, Design and Product, Distributed Computing Architecture, Feature Engineering, NoSQL, Operating Systems, Product Design, Artificial Neural Networks, Operations Research, Probability Distribution, Research and Design, Strategy and Operations, Amazon Web Services, Application Development, Calculus, Cloud Computing, Communication, Cryptography, Data Model, Database Administration, Database Application, Database Design, Dimensionality Reduction, Hardware Design, Journalism, Microarchitecture, SQL, Security Engineering, Software Framework, Statistical Programming, System Programming, iOS Development, Advertising, Algebra, Computer Graphics, Computer Networking, Critical Thinking, Docker (Software), Econometrics, Entrepreneurship, Geovisualization, Human Computer Interaction, Leadership and Management, Marketing, Matlab, Network Security, Other Programming Languages, Planning, Python Programming, Scala Programming, Security Strategy, Spreadsheet Software, Statistical Tests, Supply Chain Systems, Supply Chain and Logistics, System Security, Tableau Software, User Experience, Web Development

      학점 제공

      Mastertrack · 6-12 Months

    • Placeholder
      Placeholder
      Placeholder
      DeepLearning.AI, Stanford University

      Machine Learning

      획득할 기술: Machine Learning, Probability & Statistics, Machine Learning Algorithms, General Statistics, Theoretical Computer Science, Algorithms, Applied Machine Learning, Artificial Neural Networks, Regression, Econometrics, Computer Programming, Deep Learning, Python Programming, Statistical Programming, Mathematics, Tensorflow, Data Management, Data Structures, Statistical Machine Learning, Reinforcement Learning, Probability Distribution, Mathematical Theory & Analysis, Data Analysis, Data Mining, Linear Algebra, Computer Vision, Calculus, Feature Engineering, Bayesian Statistics, Operations Research, Research and Design, Strategy and Operations, Computational Logic, Accounting, Communication

      4.9

      (7.8k개의 검토)

      Beginner · Specialization · 1-3 Months

    logistic regression과(와) 관련된 검색

    logistic regression in r for public health
    logistic regression with python and numpy
    logistic regression 101: us household income classification
    logistic regression&application as classification algorithm
    logistic regression with numpy and python
    logistic regression for classification using julia
    predictive modeling with logistic regression using sas
    predict ad clicks using logistic regression and xg-boost
    1234…14

    요약하자면, 여기에 가장 인기 있는 logistic regression 강좌 10개가 있습니다.

    • Logistic Regression in R for Public Health: Imperial College London
    • Predictive Modeling with Logistic Regression using SAS: SAS
    • Logistic Regression with NumPy and Python: Coursera Project Network
    • Logistic Regression&application as Classification Algorithm: Coursera Project Network
    • Logistic Regression for Classification using Julia: Coursera Project Network
    • Logistic Regression with Python and Numpy: Coursera Project Network
    • Logistic Regression 101: US Household Income Classification: Coursera Project Network
    • Predict Ad Clicks Using Logistic Regression and XG-Boost: Coursera Project Network
    • Machine Learning for Analytics MasterTrack™ Certificate: University of Chicago
    • Business Analytics for Managers MasterTrack® Certificate: Tufts University

    Probability And Statistics에서 학습할 수 있는 스킬

    R 프로그래밍 (19)
    추정 (16)
    선형 회귀 (12)
    통계 분석 (12)
    통계적 추론 (11)
    회귀 분석 (10)
    생물 통계학 (9)
    베이지안 (7)
    확률 분포 (7)
    베이지안 통계 (6)
    의료 통계학 (6)

    Logistic Regression에 대한 자주 묻는 질문

    • Logistic regression is a technique used in statistics that allows people to estimate the probability of something happening based on existing data they have about that event taking place before. Mathematical models are used often in science and engineering disciplines to explain concepts using mathematical language, and one of these models is logical regression. Logistic regression works using binary data, meaning there are only two possible outcomes for the event: It takes place, or it doesn’t take place. To figure out the probability of these two outcomes, logistic regression uses equations that calculate odds ratios — the odds that something will happen or it won’t. This predictive modeling tool plays a large role not only in statistics but also in machine learning, which involves computers learning information that they haven’t explicitly been programmed to process.‎

    • If you’re considering going into a career field that works with data, software or mathematics, logical regression is a valuable area of study to focus on. Logistic regression becomes an important step of the programming process when you’re building software that deals with predictive modeling or data analysis. And, if you’re interested in enhancing your understanding of machine learning, logistic regression is an essential. When you understand modeling with logical regression, you can progress more easily to the complex models involved with machine learning while learning how to best prepare data for processing.‎

    • A career as a data scientist or data analyst gives you the opportunity to apply your knowledge of logistic regression, but you’ll also frequently draw upon your skills in this arena if you want to go into the field of machine learning. Although these careers are relatively broad, working with machine learning and logistic regression is also possible in a variety of specialties you’ll find in software engineering, computational linguistics and software development. As you begin to learn more about logistic regression while taking online classes, you may discover a particular area of interest you want to explore — and your new skills can help you discover more.‎

    • Taking online courses about logistic regression can give you the knowledge you need to progress in your field or start fresh. In your career as a data scientist or analyst, you know the importance of statistical approaches and the variety of data-modeling techniques you utilize on a regular basis. But if you’re ready to dig deeper into these concepts to boost your understanding and put new ideas and skills into practice, taking online courses about logistic regression can get you where you want to go. If you’re starting with the basics, take a ground-up approach with introductory courses that create a solid foundation for future learning. Or, if you’re looking to supplement your existing knowledge base with a greater understanding of logistic regression, try courses that help you learn the concept’s role in machine learning and programming software for predictive modeling. You’ll appreciate your newfound comprehension of these innovative ideas — and you’ll love the freedom to participate in online courses when and where it’s most convenient for you.‎

    이 FAQ 콘텐츠는 정보 전달 목적만으로 사용할 수 있습니다. 학습자는 과정 및 기타 학점 정보가 개인적, 직업적 및 재정적 목표에 부합하는지 확인하기 위해 추가 조사를 수행하는 것이 좋습니다.
    살펴볼 만한 다른 주제
    Placeholder
    예술 & 인문학
    338개의 강좌
    Placeholder
    비즈니스
    1095개의 강좌
    Placeholder
    컴퓨터 공학
    668개의 강좌
    Placeholder
    데이터 과학
    425개의 강좌
    Placeholder
    정보 기술
    145개의 강좌
    Placeholder
    건강
    471개의 강좌
    Placeholder
    수학 및 논리
    70개의 강좌
    Placeholder
    자기개발
    137개의 강좌
    Placeholder
    물리 과학 및 공학
    413개의 강좌
    Placeholder
    사회 과학
    401개의 강좌
    Placeholder
    언어 학습
    150개의 강좌

    Coursera Footer

    경력을 시작하거나 쌓기

    • Google 데이터 분석가
    • Google 디지털 마케팅 및 전자 상거래 전문 자격증
    • Python을 통한 Google IT 자동화 전문 자격증
    • Google IT 지원
    • Google 프로젝트 관리
    • Google UX 디자인
    • Google 클라우드 자격증: 클라우드 아키텍트 취득 준비
    • IBM 사이버 보안 분석가
    • IBM 데이터 분석가
    • IBM 데이터 엔지니어링
    • IBM 데이터 과학
    • IBM 풀스택 클라우드 개발자
    • IBM 기계 학습
    • Intuit 부기
    • Meta 프런트 엔드 개발자
    • DeepLearning.AI TensorFlow 개발자 전문 자격증
    • SAS 프로그래머 전문 자격증
    • 경력 시작
    • 수료증 취득 준비
    • 경력 쌓기
    • Python 구문 오류를 찾아내는 방법
    • Python 예외를 발견하는 방법
    • 모든 프로그래밍 자습서 보기

    인기 강좌 및 수료증

    • 무료 강좌
    • 인공 지능 강좌
    • 블록체인 강좌
    • 컴퓨터 공학 강좌
    • Cursos Gratis
    • 사이버 보안 강좌
    • 데이터 분석 강좌
    • 데이터 과학 강좌
    • 영어 말하기 강좌
    • 풀스택 웹 개발 강좌
    • Google 강좌
    • 인사 강좌
    • IT 강좌
    • 영어 학습 강좌
    • Microsoft Excel 강좌
    • 제품 관리 강좌
    • 프로젝트 관리 강좌
    • Python 강좌
    • SQL 강좌
    • 애자일 수료증
    • CAPM 수료증
    • CompTIA A+ 수료증
    • 데이터 분석 수료증
    • 스크럼 마스터 수료증
    • 모든 강좌 보기

    인기 컬렉션 및 문서

    • 하루만에 완료할 수 있는 무료 온라인 강좌
    • 인기 무료 강좌
    • 비즈니스 직무
    • 사이버 보안 직무
    • 신입 IT 직무
    • 데이터 분석가 면접 질문
    • 데이터 분석 프로젝트
    • 데이터 분석가로 취업하는 방법
    • 프로젝트 관리자로 취업하는 방법
    • IT 기술
    • 프로젝트 관리자 면접 질문
    • Python 프로그래밍 기술
    • 면접에서 물어보는 강점과 약점
    • 데이터 분석가가 하는 일
    • 소프트웨어 엔지니어가 하는 일
    • 데이터 엔지니어란
    • 데이터 과학자란
    • 제품 디자이너란
    • 스크럼 마스터란
    • UX 리서처란
    • PMP 수료증을 취득하는 방법
    • PMI 수료증
    • 인기 있는 사이버 보안 자격증
    • 인기 있는 SQL 자격증
    • 모든 Coursera 문서 읽기

    온라인으로 학위 또는 자격증 취득

    • Google 전문 자격증
    • 전문 자격증
    • 모든 자격증 보기
    • 학사 학위
    • 석사 학위
    • 컴퓨터 공학 학위
    • 데이터 과학 학위
    • MBA 및 경영학 학위
    • 데이터 분석 학위
    • 공중 보건 학위
    • 사회 과학 학위
    • 관리 학위
    • BA 및 BS 학위 비교
    • 학사 학위란 무엇인가요?
    • 개발해야 할 11가지 좋은 학습 습관
    • 추천서를 작성하는 방법
    • 비즈니스 학위 취득 후 취업 가능한 10개의 수요가 높은 직무
    • 컴퓨터 공학 석사 학위는 취득할 만한 가치가 있나요?
    • 모든 학위 프로그램 보기
    • Coursera 인도
    • Coursera 영국
    • Coursera 멕시코

    Coursera

    • 소개
    • 제공 내용
    • 리더십
    • 직업
    • 카탈로그
    • Coursera Plus
    • 전문 자격증
    • MasterTrack® 자격증
    • 학위
    • 기업용 Coursera
    • 정부용
    • 캠퍼스용
    • 파트너가 되기
    • 코로나바이러스감염증-19 대응

    커뮤니티

    • 학습자
    • 파트너
    • 베타 테스터
    • 번역가
    • 블로그
    • 기술 블로그
    • 지도 센터

    기타

    • 보도 자료
    • 투자자
    • 조건
    • 개인정보 보호
    • 도움말
    • 접근성
    • 문의하기
    • 문서
    • 디렉토리
    • 계열사
    • 현대 노예 선언문
    어디에서나 학습
    Placeholder
    Placeholder
    Placeholder
    © 2023 Coursera Inc. All rights reserved.
    • Placeholder
    • Placeholder
    • Placeholder
    • Placeholder
    • Placeholder